Python API

Scikit-learn API

MIDRegressor([params_main, params_inter, ...])

Stand-alone Maximum Interpretation Decomposition regressor.

MIDExplainer(estimator[, target_classes, ...])

Surrogate Maximium Interpretation Decomposition explainer.

Model Interpretation

MIDImportance(estimator, **kwargs)

MID Importance.

MIDBreakdown(estimator[, row])

MID Breakdown.

MIDConditional(estimator, variable, **kwargs)

MID Conditional Expectations.

Plotting

plot_effect(estimator, term[, style, theme, ...])

Visualize the estimated main or interaction effect of a fitted MID model with plotnine.

plot_importance(importance[, style, theme, ...])

Visualize the importance scores of the component functions from a fitted MID model with plotnine.

plot_breakdown(breakdown[, style, theme, ...])

Visualize the decomposition of a single prediction into contributions from each component term with plotnine.

plot_conditional(conditional[, style, ...])

Visualize Individual Conditional Expectation (ICE) plots or Centered ICE (c-ICE) plots with plotnine.

Color Themes

color_theme(theme, **kwargs)

Color themes for graphics.

scale_color_theme(theme[, midpoint])

Scale for 'color' aesthetics of plotnine graphics.

scale_colour_theme(theme[, midpoint])

Alias for scale_color_theme().

scale_fill_theme(theme[, midpoint])

Scale for 'fill' aesthetics of plotnine graphics.