Skip to contents

mid.conditional() creates an object to draw ICE curves of a MID model.

Usage

mid.conditional(
  object,
  variable,
  data = NULL,
  keep.effects = TRUE,
  n.samples = 100L,
  max.nrow = 100000L,
  type = c("response", "link")
)

# S3 method for class 'mid.conditional'
print(x, digits = max(3L, getOption("digits") - 2L), ...)

Arguments

object

a "mid" object.

variable

a character string or expression specifying the variable for the ICE calculation.

data

a data frame containing observations for which ICE values are calculated. If not passed, data is extracted from parent.env() based on the function call of the "mid" object.

keep.effects

logical. If TRUE, the effects of component functions are stored in the output object.

n.samples

integer. The number of sample points for the calculation.

max.nrow

an integer specifying the maximum number of rows of the output data frames.

type

the type of prediction required. The default is "response". "link" is possible if the MID model uses a link function.

x

a "mid.conditional" object to be printed.

digits

an integer specifying the minimum number of significant digits to be printed.

...

additional parameters to be passed to print.default() to print the sample point vector.

Value

mid.conditional() returns an object of class "mid.conditional" with the following components:

terms

the character vector of relevant terms.

observed

the data frame of the actual observations and the corresponding predictions.

conditional

the data frame of the hypothetical observations and the corresponding predictions.

values

the sample points of the variable.

Details

mid.conditional() obtains predictions for hypothetical observations from a MID model and returns a "mid.conditional" object. The graphing functions ggmid() and plot() can be used to generate the ICE curve plots.

Examples

data(airquality, package = "datasets")
mid <- interpret(Ozone ~ .^2, airquality, lambda = 1)
#> 'model' not passed: response variable in 'data' is used
mc <- mid.conditional(mid, "Wind", airquality)
mc
#> 
#> Individual Conditional Expectation for 153 Observations
#> 
#> Variable: Wind
#> 
#> Sample Points:
#>   [1]  2.3000  2.4859  2.6717  2.8576  3.0434  3.2293  3.4152  3.6010  3.7869
#>  [10]  3.9727  4.1586  4.3444  4.5303  4.7162  4.9020  5.0879  5.2737  5.4596
#>  [19]  5.6455  5.8313  6.0172  6.2030  6.3889  6.5747  6.7606  6.9465  7.1323
#>  [28]  7.3182  7.5040  7.6899  7.8758  8.0616  8.2475  8.4333  8.6192  8.8051
#>  [37]  8.9909  9.1768  9.3626  9.5485  9.7343  9.9202 10.1061 10.2919 10.4778
#>  [46] 10.6636 10.8495 11.0354 11.2212 11.4071 11.5929 11.7788 11.9646 12.1505
#>  [55] 12.3364 12.5222 12.7081 12.8939 13.0798 13.2657 13.4515 13.6374 13.8232
#>  [64] 14.0091 14.1949 14.3808 14.5667 14.7525 14.9384 15.1242 15.3101 15.4960
#>  [73] 15.6818 15.8677 16.0535 16.2394 16.4253 16.6111 16.7970 16.9828 17.1687
#>  [82] 17.3545 17.5404 17.7263 17.9121 18.0980 18.2838 18.4697 18.6556 18.8414
#>  [91] 19.0273 19.2131 19.3990 19.5848 19.7707 19.9566 20.1424 20.3283 20.5141
#> [100] 20.7000