
Package index
-
interpret() - Fit MID Models
-
plot(<mid>) - Plot MID Component Functions
-
ggmid()autoplot(<mid>) - Plot MID Component Functions with ggplot2
-
mid.plots() - Plot Multiple MID Component Functions
-
predict(<mid>) - Predict Method for fitted MID Models
-
mid.effect()mid.f() - Evaluate Single MID Component Functions
-
print(<mid>) - Print MID Models
-
summary(<mid>) - Summarize MID Models
-
mid.terms() - Extract Terms from MID Models
-
mid.importance() - Calculate MID Importance
-
plot(<mid.importance>) - Plot MID Importance
-
ggmid(<mid.importance>)autoplot(<mid.importance>) - Plot MID Importance with ggplot2
-
mid.breakdown() - Calculate MID Breakdowns
-
plot(<mid.breakdown>) - Plot MID Breakdowns
-
ggmid(<mid.breakdown>)autoplot(<mid.breakdown>) - Plot MID Breakdowns with ggplot2
-
mid.conditional() - Calculate MID Conditional Expectations
-
plot(<mid.conditional>) - Plot MID Conditional Expectations
-
ggmid(<mid.conditional>)autoplot(<mid.conditional>) - Plot MID Conditional Expectations with ggplot2
-
get.yhat() - Wrapper Prediction Function
-
factor.encoder()factor.frame() - Encoder for Qualitative Variables
-
numeric.encoder()numeric.frame() - Encoder for Quantitative Variables
-
color.theme() - Color Themes for Graphics
-
color.theme.info()color.theme.env() - Retrieve Color Theme Information
-
set.color.theme() - Register Color Themes
-
scale_color_theme()scale_colour_theme()scale_fill_theme() - Color Theme Scales for ggplot2 Graphics
-
theme_midr()par.midr() - Default Plotting Themes
-
weighted.loss() - Weighted Loss Function
-
shapviz(<mid>) - Calculate MID-Derived Shapley Values