
Package index
-
interpret()
- Fit MID Models
-
ggmid()
autoplot(<mid>)
- Plot MID with ggplot2 Package
-
mid.extract()
mid.encoding.scheme()
mid.frames()
mid.terms()
terms(<mid>)
terms(<mid.importance>)
formula(<mid>)
model.frame(<mid>)
- Extract Components from MID Models
-
mid.plots()
- Plot Multiple MID Component Functions
-
plot(<mid>)
- Plot MID with graphics Package
-
predict(<mid>)
mid.f()
- Predict Method for fitted MID Models
-
print(<mid>)
- Print MID Models
-
summary(<mid>)
- Summarize MID Models
-
mid.importance()
print(<mid.importance>)
- Calculate MID Importance
-
ggmid(<mid.importance>)
autoplot(<mid.importance>)
- Plot MID Importance with ggplot2 Package
-
plot(<mid.importance>)
- Plot MID Importance with graphics Package
-
mid.breakdown()
print(<mid.breakdown>)
- Calculate MID Breakdown
-
ggmid(<mid.breakdown>)
autoplot(<mid.breakdown>)
- Plot MID Breakdown with ggplot2 Package
-
plot(<mid.breakdown>)
- Plot MID Breakdown with graphics Package
-
mid.conditional()
print(<mid.conditional>)
- Calculate ICE of MID Models
-
ggmid(<mid.conditional>)
autoplot(<mid.conditional>)
- Plot ICE of MID Model with ggplot2 Package
-
plot(<mid.conditional>)
- Plot ICE of MID Model with graphics Package
-
factor.encoder()
factor.frame()
- Encoder for Qualitative Variables
-
numeric.encoder()
numeric.frame()
print(<encoder>)
- Encoder for Quantitative Variables
-
weighted()
augmented()
shuffled()
latticized()
weights(<weighted>)
- Weighted Data Frames
-
color.theme()
plot(<color.theme>)
print(<color.theme>)
- Color Themes for Graphics
-
scale_color_theme()
scale_colour_theme()
scale_fill_theme()
- Color Scales for ggplot2 Graphics based on Color Themes
-
get.yhat()
- Wrapper Prediction Function
-
theme_midr()
par.midr()
- Theme for ggplot Objects
-
weighted.tabulate()
- Weighted Tabulation for Vectors
-
weighted.quantile()
- Weighted Sample Quantile
-
weighted.mse()
weighted.rmse()
weighted.mae()
weighted.medae()
- Weighted Loss Functions
-
shapviz(<mid>)
- Calculate SHAP of MID Predictions