
Package index
-
interpret()
- Fit MID Models
-
plot(<mid>)
- Plot MID Component Functions
-
ggmid()
autoplot(<mid>)
- Plot MID Component Functions with ggplot2
-
mid.plots()
- Plot Multiple MID Component Functions
-
predict(<mid>)
- Predict Method for fitted MID Models
-
mid.effect()
mid.f()
- Evaluate Single MID Component Functions
-
print(<mid>)
- Print MID Models
-
summary(<mid>)
- Summarize MID Models
-
mid.terms()
- Extract Terms from MID Models
-
mid.importance()
- Calculate MID Importance
-
plot(<mid.importance>)
- Plot MID Importance
-
ggmid(<mid.importance>)
autoplot(<mid.importance>)
- Plot MID Importance with ggplot2
-
mid.breakdown()
- Calculate MID Breakdowns
-
plot(<mid.breakdown>)
- Plot MID Breakdowns
-
ggmid(<mid.breakdown>)
autoplot(<mid.breakdown>)
- Plot MID Breakdowns with ggplot2
-
mid.conditional()
- Calculate MID Conditional Expectations
-
plot(<mid.conditional>)
- Plot MID Conditional Expectations
-
ggmid(<mid.conditional>)
autoplot(<mid.conditional>)
- Plot MID Conditional Expectations with ggplot2
-
get.yhat()
- Wrapper Prediction Function
-
factor.encoder()
factor.frame()
- Encoder for Qualitative Variables
-
numeric.encoder()
numeric.frame()
- Encoder for Quantitative Variables
-
color.theme()
- Color Themes for Graphics
-
color.theme.info()
color.theme.env()
- Retrieve Color Theme Information
-
set.color.theme()
- Register Color Themes
-
scale_color_theme()
scale_colour_theme()
scale_fill_theme()
- Color Theme Scales for ggplot2 Graphics
-
theme_midr()
par.midr()
- Default Plotting Themes
-
weighted.loss()
- Weighted Loss Function
-
shapviz(<mid>)
- Calculate MID-Derived Shapley Values